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A NEW BOUND FOR THE SMALLEST x WITH r(x) > li(x) 

CARTER BAYS AND RICHARD H. HUDSON 

ABSTRACT. Let 7r(x) denote the number of primes < x and let li(x) denote the 
usual integral logarithm of x. We prove that there are at least 1015'3 integer 
values of x in the vicinity of 1.39822 x 10316 with 7r(x) > li(x). This improves 
earlier bounds of Skewes, Lehman, and te Riele. We also plot more than 10000 
values of 7r(x) - li(x) in four different regions, including the regions discovered 
by Lehman, te Riele, and the authors of this paper, and a more distant region 
in the vicinity of 1.617 x 10960(8, where 7r(x) appears to exceed li(x) by more 
than .18x 2 / log x. The plots strongly suggest, although upper bounds derived 
to date for li(x) - 7r(x) are not sufficient for a proof, that 7r(x) exceeds li(x) 
for at least 10311 integers in the vicinity of 1.398 x 10316. If it is possible to 
improve our bound for 7r(x) - li(x) by finding a sign change before 10316, our 
first plot clearly delineates the potential candidates. Finally, we compute the 
logarithmic density of li(x) - 7r(x) and find that as x departs from the region 
in the vicinity of 1.62 x 10960(8, the density is 1 - 2.7 x 10-7 = .99999973, 
and that it varies from this by no more than 9 x 10-8 over the next 10'03 
integers. This should be compared to Rubinstein and Sarnak. 

1. INTRODUCTION AND SUMMARY 

Let 

urn ' 

dt 
x 

dt li(x) = lim { / d + z d 

In 1796, at the age of 15, Gauss (see [4, pp. 2, 305]) observed that if ir(x) denotes 
the number of primes < x, then 

(1 .1) 7r(x) < li(x) 

for all x < 3000000, and for over a century it was widely believed that (1.1) holds 
for all x. Lagarias, Miller, and Odlyzko [8] showed that (1.1) holds for selected 
values of x as large as 4 x 1016, and Deleglise and Rivat have recently extended 
these computations to 1020. For values up to 1018, see [3]. 

Nonetheless, in 1914, J. E. Littlewood (see [7], [10]) proved that there is a positive 
constant K such that infinitely often 

kX2 
(1.2) 7r(x) - li(x) > lo log log log x. 

In 1933, Skewes [16] proved that there are values of x with 

(1.3) x < 101010 
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such that ir(x) - li(x) > 0. In 1955 Skewes [17] improved (1.3) by showing that the 
exponent 34 in (1.3) can be replaced by 3. The 1933 proof required the Riemann 
hypothesis. 

The first breakthrough in lowering Skewes' legendary bound was achieved by 
Lehman [9] in 1966. All subsequent work, including ours, depends on his theorem; 
see ?2, Theorem 1. 

Lehman proved that there are at least 10500 values of x lying between 1.53 x 101165 

and 1.65 x 101165 with ir(x) > li(x). In 1987 te Riele [13] succeeded in bringing 
this bound down by showing that there are at least 10180 integers in the vicinity of 
6.658 x 10370 with 7r(x) > li(x). Our result depends on the accuracy of the values 
for the first 1,000,000 zeros of the Riemann zeta function which were generously 
provided to us by Andrew Odlyzko, and on the truth of the Riemann hypothesis 
for all complex zeros j3 + i-y with ay < 107. The truth of the Riemann hypothesis 
for the first 3.5 million zeroes was established by Rosser, Yohe, and Schoenfeld in 
1968; see [4, p. 172]. The truth for all zeroes < 545,439,823.215 was given by Van 
de Lune, te Riele, and Winter [11] in 1986. 

We also give in this paper a plot of li(x) -7r(x) for x < 10400. If our bound in 
the vicinity of 10316 is not best possible, it is highly probable that any improvement 
will coincide with locations (marked with small arrows) where the plot in Figures 
la and lb appears to be close to the zero axis. If a value of x < 10316 exists with 
7r(x) > li(x), substantially more than 1,000,000 zeroes of the zeta function will 
be required to prove its existence. We think it more likely that no such x exists. 
However, we give in Figure Ic a high resolution plot for the best of three candidates 
we have found for an earlier sign change. 

We also give in this paper high resolution plots of the regions found by Lehman, 
te Riele, and the authors of this paper. The plots strongly suggest (but do not 
prove) that the number of values of x with 7r(x) > li(x) in those three regions is a 
substantial proportion of the integers lying between the first and last sign changes 
in these regions. If so, there are more than 10311 integers x with 7r(x) > li(x) 
between 1.3981 x 10316 and 1.3983 x 10316 (see Figure 2b). Finally, we consider 
the question of whether the growth rate logloglogx in (1.2) is close to the truth 
or whether a substantially more rapid growth rate, say loglogx, is more realistic. 
In particular, we compute ir(x) - li(x) for x < 1030000. Ingham [7] has referred 
to the gap in our knowledge of the true upper and lower bounds for 7r(x) - li(x) 
(even assuming the Riemann hypothesis) as a matter of some import. See, in this 
connection, Montgomery [12]. A major motivation for computing 7r(x) - li(x) for 
such large x is to corroborate the recent work of Rubinstein and Sarnak [15], who 
prove, under the Riemann hypothesis, that the logarithmic density of integers x 
with 7r(x) < li(x) should be (to 8 decimals) .99999973. In Section 4 (see also 
Table 1) we discuss a computation of the logarithmic density of li(x) -7r(x) using 
Lehman's function, given in (2.4) of this paper, and a function introduced by Bays 
and Hudson in [1], and find that the logarithmic density at the end of the region in 
Figure 5 in both computations is .99999973, and over the range 109608 to 1029969 

the maximum difference in the computed density is bounded above by 9 x 10-8. 
The reader is urged to read the Remark on Table 1 at the end of the paper, and 
in any case to maintain proper skepticism regarding the machine computations in 
Table 1 until they have been independently corroborated. The problem of rigorously 
proving for a particular identifiable value of x that 7r(x) > li(x), while for all smaller 
x, 7r(x) < li(x), and the related problem of rigorously proving that 7r(x) < li(x) 
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for a large proportion of integers in the regions found to date, is likely to remain 
open for a long time. Even the finest resolution plot at 10316 will plot points which 
are more than 10300 apart. Our knowledge of upper bounds for 7r(x + y) (see the 
discussion of Ian Richards in [5]) is insufficient to rule out 7r(x) - li(x) undergoing a 
sign change for a gap y on the order of 10300 at 10316. Thus, while te Riele knew in 
his heart that there were many more than 10180 successive integers in the vicinity 
of 6.6578 x 10370, and we believe that there are many more than 10153 integers in 
the vicinity of 1.39822 x 10316 with 7r(x) > li(x), it will not be possible, until our 
knowledge regarding gaps is greatly improved or machines are capable of doing more 
than 10100 computations, to rigorously prove what appears in Figure 2b to be true. 
Namely, that there are more than 10311 integers between 1.39820386 x 10316 and 
1.39821924 x 10316 with 7r(x) > li(x). Nonetheless, our experience with sign changes 
of 7r4,3(X) - 7r4,1 (X) certainly suggests that wildly erratic behavior of 7r(x) - li(x) 
over short gaps is unlikely, at least for any value of x accessible to a computer, so 
that 10311 should be much closer to the truth than 10153. Finally, we observe that 
totally unanticipated breakthroughs like that of R. Sherman Lehman can happen 
at any time, and a different approach may establish the truth of the matter far 
sooner than we expect. 

2. PROOF THAT THERE ARE X IN THE VICINITY OF 1.39822 x 10316 

WITH 7r(x) > li(x) 

Our proof, like that of te Riele, rests on the following theorem of Lehman [9]. 

Theorem 1 (Lehman, 1966). Let A be a positive number such that /3 = 2 for all 
zeroes p = 3 + i-y of C(&s) for which 0 <y < A. Lef ax, r, and w be positive numbers 
such that w -7 > 1 and the conditions 

(2.1) 4A/w < a < A2 and 2A/c < rq < w/2 

hold. Let 

(2.2) K(y) = ey /2 
27r 

Then, for 2ire < T < A, 

(2.3) . K(u - w)ue-u/( r(eu)-li(eu)) du = -1 - E e 2"2 + R, 
w-7 0< 1-l <T 

where 

R< S +?S2+S3+S4+S5+S6 

3 05 + 4(w + ,)e-(w-7)/6 + 2e/2+ .08 ee -a2/2 
w - 7q V2-1re 

eT2/2 ( 2 log 2 + T + T3 

+- A log Ae-A2/2a+?(+71)/2(4a 2 + 152 ) 

If the Riemann hypothesis holds, the conditions (2.1) and the term S6 in the error 
bound may be omitted. 
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Remark. Since 1966, little has been done to improve the bounds for SI, . . . , S6. As 
we will see in the following proof, it enough zeroes of ((S) are used so that a can 
be taken large, only the term S1 contributes significantly to the error. Since 

7r(x-:2 ) ii(z2 ) : _ 2 x 

2 2 log x log2 x ? log2x 

(see [6, p. 563] or [14, p. 76]), it should be possible to reduce the 3.05 in the S1 
term. We will not require such an improvement, however, to prove the following 
theorem. 

Theorem 2. There exist values of x in the vicinity of 1.39822 x 10316 (in particular, 
between 1.398201 X 10316 and 1.398244 x 10316) with 7r(x) > li(x). 

Proof. We apply Lehman's theorem (note that the conditions in 2.1 are satisfied) 
with 

A = 107, a=1010, =.002, 

T = 'YI,ooo,ooo = 600269.677..., w = 727.95209. 

As te Riele [13] (see also [11]) has noted, we can take A as large as 545,439,823.215, 
but this is more than we need. Using the above parameters, we have 

SI = 
3.05 

<.004189851 727.95009 
S2 = 4(727.95409)e(-727.95009)/6 < 5.94 x 1o-50 

S3= (2e- 10'0(.002)2/2)/ 2ir(200) < 3.64 x 10-8689, 

S4 = (.08)( 105)e1?'(002)2/2 < 1.03 x 10-8682, 

S5 =- (600269.677)2/2(1010) ( 002 (600269.677) 
5-e 1~~~~~~,r(600269.677)2 V 2,7r J 

8 log(600269.677) + 4(10)10 < 1 53 x 10-, 
600269.677 (600269.677)3 J 

S6 = 107 log 107e(-5000+363.977045) (.03004) < 1.20 x 10-2001. 

Thus, 

R = S1 + **+ S6< .00419. 

Now let 

(2.4) H = e e'2/2a 
p 

Defining H* to be the finite sum obtained when (2.4) is summed over all a with 
0 < 1^-j < 600269.677, a is taken to be 1010, and w is taken to be 727.95209, we 
obtain 

(2.5) H* = 1.012762.... 

where H* is our machine computation approximation of H defined in [13]. 
It follows that 

jW+ u 
| K(u- w)ueu/2 (7r(eu )-li(eu)du) > O, 
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unless there is an error in our computation of H* greater than .0078. We have ruled 
this out in a large number of ways, some of which are described in the following 
section. Suffice to say here that for the parameters chosen by te Riele in discovering 
the sign change in the vicinity of e853 .852286, our computed value H* differs from te 
Riele's by at most .00000012. This alone makes the likelihood of a machine error 
as large as .0078 appear remote.' Finally, assuming for the moment that such a 
machine error does not take place, the positivity of the kernel K implies that there 
is a value of u between w - q and w + r where 7r(eu) - li(eu) > 0. This completes 
the proof of Theorem 2. OL 

3. MACHINE COMPUTATIONS 

We ruled out the likelihood of a machine error serious enough to affect the result 
in this paper in several ways. 

First, we carried out the computation on two different computers and performed 
the computation several times. Second, we chose a value of a considerably less than 
the largest possible value which maximizes (2.5). For example, if we chose a = 2.5 x 
101l, then H* = 1.016145, but the error in S5 increases markedly. A choice of ca = 
2.5 x 1011 allows one to show that there are more than (1.016145 -.0042)eU/2/u > 
10153 successive integers between 1.39821924 x 10316 and 1.39821925 x 10316 with 
7r(x) > li(x). However, we achieve effectively the same result with H* = 1.012762. 
Since we believe there are probably more than 10311 integers in the region in Figure 
2b with 7r(x) > li(x), we chose to guard against machine error rather than trying 
to maximize H. Observe that for ca = 1010 at a height of T = 300,000 we have 
e < .01111, so that a reduction of a significantly reduces the effect (and so 
the error) in using zeroes to a greater height than te Riele (for a = 2.5 x 1011, 
e- 2/2 > .1652). 

Third, we computed 7r(x) - li(x) using the theorem established by Hudson in [1], 
which assumes the Riemann hypothesis, employing constants which agree closely 
with machine computations to date. The regions plotted in Figures 1-5 are indis- 
tinguishable from one another if we use this theorem or if we use (2.4). 

Finally, we utilized te Riele's analysis [13, p. 327]. In this worst case scenario, 
where effectively all million zeroes of the zeta function conspire simultaneously to 
make the computed value H* larger than its true value H, we can, nonetheless, 
rule out a machine error nearly as large as H - H* = .0078 as follows. 

Assume that the computed value ay* differs from the true value 'yj by less than 
10-9. Probably the first 2,000 zeroes provided to us by Odlyzko are even more 
accurate, but we do not need such an assumption. Referring to (3.5) and (3.7) in 
[9] and noting that for Odlyzko's zeroes we do have 1yi -ay < 10-9 for 1 < i < 106, 

we must have (since ef 2/2a < 1 for all ay if ca = 1010) that, for w = 728, and 
14 < ?I <y ? <Y o50000 < 40434 < ^Y1,ooo,ooo < 600270, using te Riele's notations, 

(3.1) It'CY)I<-(2w-+ F+2+ 2+4?) <1509 

'We are most grateful to the referee of this paper for computing H* using 1, 000,000 zeroes 
computed independently. He obtained H* (-yj,((0,(((, 101(, 727.952088813)= 1.0127617.... 
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But then, by te Riele's analysis, 

(3.2) 
10 

10 1509 15000 35000 950000 
IH-H*I < 10-9 < log( + + ) < .00166. 

i=1~~~~~= 
In fact, a machine computation gives >II_2(1(lS9fyt) =14255.702..., so that the 
actual machine error is probably bounded above by 1.5 x 10-5, but this computation 
uses Odlyzko's zeroes and (3.2) does not. 

Remark. As te Riele noted, it is not possible to obtain Theorem 2 using 50,000 ze- 
roes of the Riemann-zeta function. The 1,000,000 zeroes provided to us by Andrew 
Odlyzko are required for the proof of this result (see the acknowledgment at the 
end of this paper). 

4. LOGARITHMIC DENSITY OF THE SET OF X WITH li(x) > ir(x) 

Let P be the set of positive real x with li(x) > 7r(x). Using li(x) fx(log-I t)dt, 
which differs from the Cauchy principal value of fox(log- t)dt by about 1.045 
[14, p. 46], Rubinstein and Sarnak proved, using the Riemann hypothesis, that 
the logarithmic density of the set P, denoted by 5(P), is .99999973..., where 
6(P) = 6(P) = 5(P) and 

dt 6(P) = limisup dt 
X-+0 log x tcPn[2,x] t 

6(P) = lim inf / dt 
- xoo log x te Pn[2,x]t 

This motivated us to compute the logarithmic density of li(x) - 7r(x) using (2.4) 
and also using a theorem established by Hudson in [11, which has been shown to 
give highly accurate results for the related difference 7r4,3(x) - 7r4, (x). Using both 
methods (with a chosen somewhat larger in (2.4)), we find the logarithmic density 
at 1.62 x 109608 (which appears to be the sixteenth region with 7r(x) > li(x)) is 
.99999973.... Over the next 1030000 integers, the logarithmic density differs from 
this figure by at most 9 x 10-8. 

5. DESCRIPTION OF FIGURES 

Figures la and lb. These plots show li(x) - 7r(x) on a logarithmic scale for 
values of x from 106 to 10400. The numbers give values of x (as powers of ten). 
The small vertical bars cross the zero axis (the plot dips below this horizontal line 
when li(x) - 7r(x) exhibits a sign change). The top horizontal line represents 7r(x2); 
the middle line, about which the plot hovers, depicts 7r(x2 /2). The large arrows 
indicate the crossings in the vicinity of 10316 and 10370. The small arrows show 
"near crossings"; if a crossing earlier than 10316 exists, it is likely to be at one of 
these spots. 

Figures 2 through 5. Detailed plots of the regions in the vicinity of 10316, 10370, 

101165, and 109608 are given in Figures 2 through 5, which are all drawn to the same 
scale. The top line represents 7r(x 2); the bottom line is the zero axis. The reference 
line between is at 7r(x 

1 
)/4. Compare the relatively miniscule expanse of the region 
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l~~' l 
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 

~~~~~~~6 Io 4 5 I6 97 98 9 1-0 10 10 13 1;4 
lllll 

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 103 

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 

35 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 

187 188 89l90 .31 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 

FIGURE la 

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 

-~~~~~~~~~~~~~~t 1 

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 

289 290 291 292 293 294 295 296 297 298 99 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 

3 
w 1 

1 
3' 32 32 2 9 33 

l l l l l l 

315 316 8 319 320 321 322 323 324 5326 327 328 329 330 331 332 333 334 335 336 337 338 339 

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 

I t l l . ~~~~~~~~~~~~~~~~~~1 w im 

366 367 368 369 370 3 .-'-,2 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 

392 393 394 395 396 397 398 399 400 

FIGURE lb 
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-N~~~~~~~~~~~~~~~~~~'~~~~~~~~~~ 

1.337 1.338 1.339 1.340 1.341 1.342 1.343 1.344 1.344 
x 10190 x 10,190 x 10190 x 10"190 x 10A190 x 10i190 x 10'190 x 10'19o x 10190 

FIGURE IC 

1.398 1.399 1.401 
10^318 x 10316 x 10^316 

FIGURE 2a 

v~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

* I I I I I I 
1.3977 1.3980 1.3982 1.3984 1.3987 1,3989 

x 10^31S x 10^316 x 10^316 x 10^316 x 10^316 x 10^316 

FIGURE 2b 

at 10316 with the deep crossing at 109608. The region at 10316 has been enlarged 
in Figure 2b. Here, the top horizontal line is the 7r(x2 )/4 line. Note the large 
arrow in Figure 2b; the authors have been unable to ascertain if this "touching" 
point crosses the axis. Further calculations (involving more zeroes of the Riemann 
zeta function) must be made in order to determine whether this is the first actual 
crossing region in the vicinity of 1.398 x 10316 

Remark. For additional information on how the plots in Figures 1-5 were obtained, 
see [1]. 
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6.658 6.667 1 6.675 
x 10^370 x 10^370 x 10^370 

FIGURE 3 

1.592 1.594 1 596 
x 10W165 x 10'1165 x iF1165 

FIGURE 4 

1.616 1.618 1.620 
x 10'%08 x 1Or9SO8 x 10'9609 

FIGURE 5 

Remark on Table 1. The expectation that 7r(x) will exceed li(x) when g(x) < 0, 
at least if the Riemann hypothesis is true, has long been known, and is noted by 
Lehman on p. 398 of [9]. The function f(x) is referred to implicitly in the work of 
Rubinstein and Sarnak [15], and is used by Bays and Hudson [1] to successfully du- 
plicate the distribution of 74,3 (X) - 7,4 (X) with the Riemann-zeta function replaced 
by L(s, x), X the nonprincipal character modulo 4. The difference between the bias 
computations using f(x) and g(x) shows up only in the eleventh decimal place 
over the entire range presented. Nonetheless, Table 1 is not intended to convince 
the reader that the logarithmic density at oo is .99999973. This has already been 
proven, using the Riemann hypothesis, by Rubinstein and Sarnak [15]. What is 
remarkable is that Table 1 suggests that as early as the sixteenth region of integers 
x, this convergent is close to the logarithmic density computed using f(x) or g(x). 
This suggests that giant fluctuations of 7r(x) - li(x), which must occur because of 
(1.2), occur very infrequently on a logarithmic scale. 
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TABLE 1 

The first 20 regions where f (x) = Ej11 (2 + sill -Y 1og X + log) < 0. 

begins near bias in* bias out 

1. 1.39820 x 10316 .999999999... .999999949994 

2. 6.65662 x 10370 .99999995 ... .99999920... 

3. 1.59147 x 101165 .99999974... .99999954... 

4. 2.42800 x 101305 .99999959 ... .99999951 ... 

5. 9.31915 x 101455 .99999956 ... .99999956... 

6. 2.30951 x 102067 .99999969 ... .99999961 ... 

7. 3.80469 x 104517 .99999982 ... .99999982... 

8. 2.76782 x 104943 .99999983 ... .99999975... 

9. 4.06825 x 105089 .99999976 ... .99999976... 

10. 6.41264 x 105500 .99999977 ... .99999973... 

11. 1.19276 x 106217 .99999976 ... .99999976... 

12. 2.90946 x 107210 .99999979... .99999979... 

13. 2.84527 x 107838 .99999981 ... .99999981 ... 

14. 4.36766 x 108045 .99999981 ... .99999981999. 

15. 2.29121 x 109497 .99999984 ... .99999984... 

16. 1.61485 x 109608 .99999984... .99999973... 

17. 6.46247 x 1010269 .99999975... .99999975... 

18. 2.6111 x 1010292 .99999975... .99999974... 

19. 1.59711 x 1012198 .99999978... .99999978... 

20. 3.84134 x 1012370 .99999978 ... .99999978... 

*The "bias in" approximates the logarithmic density of li(x) -7r(x) 
at the beginning of each region, and "bias out" approximates the 
logarithmic density at the end of each region. Results are very 
similar for the beginning point and the bias if f(x) is replaced by 
values of x with 

10z) =c/2, Cosyi logx + 2-y siny ylogx g(x) = 1 x 10 ) 

choosing ca 4 x 1010 
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We are grateful to Carl Pomerance for pointing out that the density calculations 
in Table 1 are suspect if the numerical calculations do not accurately find the 
beginning and end of regions with 7r(x) > li(x). Our optimism that this is not the 
case is based on the astonishing accuracy of our duplication of 74,3(X) - 74,1 (X) in 
[1] using just 12,000 zeroes of L(s, X), X the nonprincipal character modulo 4. Not 
only did our method detect each of the seven known regions with 74,3(X) > 74,1 (X), 

including the first region which contains exactly one prime x = 26,861, it did not 
predict a single region that does not exist. The starting and ending points of the 
regions and the logarithmic density calculations were very close to actual computed 
values, and the logarithmic density of .99592... computed for x in the vicinity of 
10500 agrees with the value .9959... obtained by Rubinstein and Sarnak in [15] 
under the generalized Riemann hypothesis. In [2] we obtain similarly accurate 
results for the moduli 3, 5, 7, 11 and 13. On numerical grounds, we would expect 
the values obtained in Table 1 to be more accurate than results in [1] and [2], if for 
no other reason, because of the use of 1,000,000 zeroes of the Riemann zeta function. 
We concede that our program could have missed shallow regions or included ones 
that do not exist. Nonetheless, Table 1 represents the first serious attempt to 
analyze the distribution of li(x) -7r(x) over the first 1030,000 integers. That this 
effort will be improved upon, we have no doubt. 
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